Jim Gray formulated several informal rules—or laws—that codify how to approach data engineering challenges related to large-scale scientific datasets. The laws are as follows: 1. Scientific computing is becoming increasingly data intensive. 2. The solution is in a “scale-out” architecture. 3. Bring computations to the data, rather than data to the computations. 4. Start the design with the “20 queries.” 5. Go from “working to working.”
Note: informal laws for working with big data
High-performance, scalable numerical computation also presents an algorithmic challenge. Traditional numerical analysis packages have been designed to operate on datasets that fit in RAM. To tackle analyses that are orders of magnitude larger, these packages must be redesigned to work in a multi-phase, divide-and-conquer manner while maintaining their numerical accuracy. This suggests an approach in which a large-scale problem is decomposed into smaller pieces that can be solved in RAM, whereas the rest of the dataset resides on disk. This approach is analogous to the way in which database algorithms...
Note: when RAM isn't enough
Most projects make the mistake of trying to be “everything for everyone.” It is clear that that some features are more important than others and that various design trade-offs are necessary, resulting in performance trade-offs.
Note: @miosman with your help we didn't become one of the "most"
The global ocean is the last physical frontier on Earth. Covering 70 percent of the planetary surface, it is the largest, most complex biome we know. The ocean is a huge, mobile reservoir of heat and chemical mass. As such, it is the “engine” that drives weather-climate systems across the ocean basins and the continents, directly affecting food production, drought, and flooding on land. Water is effectively opaque to electromagnetic radiation, so the seafloor has not been as well mapped as the surfaces of Mars and Venus, and although the spatial relationships within the ocean basins are well...
Note: nice description of the oceans